Coordinate Algebra

3.1a Representing Relations and Functions

NOTES

- Vocabulary:
- Relation - a pairing between two sets of numbers (inputs \& outputs)
- Domain - set of all possible values of the first variable (x) of the function
- Range - a set of all possible values of the second variable (y) of the function
- Function - a pairing bet ween two sets of numbers such that each value of the first set is paired with exactly one value of the second set
- Ekample: Representing Relations: RELATIONS ARE REPRESENTED IN SEVERAL wAYS

1. A relation is given below. Write the relation numerically using a table and mapping diagram. Then, represent the relation as a graph.

$$
\text { Relation: }\{(1,5),(2,3),(3,2),(4,1)\}
$$

TABLE

MAPPING DIAGRAM

GRAPH

What is a function?

- HOW DO YOU DETERMINE WHETHER A RELATION IS A FUNCTION?
o Numericaliy: look to verify that each input (x-value) has one and only one output
- Graphically: Vertical Line Test (no vertical line can pass through your graph more than once
- Examples: Determine whether each relation is a function.

2. $\{(4,12),(5,18),(7,12),(8,19)\}$
3. | \mathbf{x} | 3 | 4 | 7 | 3 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{y} | 5 | 6 | -8 | 0 | 7 |
4.

5.

6.

- Examples: Find the domain and range of each relation.

7. $\{(2,6),(3,-1),(4,0),(9,0)\}$
8.

9.

10.
11.

- FUNCTION NOTATION: a fancy way of writing y...

$$
\begin{gathered}
y=3 x+4 \longrightarrow f(x)=3 x+4 \quad \text { we read: " } f \text { of } x \text { " } \\
\text { We could al so use... } g(x), j(x), h(x), k(x) \text {, etc. }
\end{gathered}
$$

- Example: Evaluating functions.

12. $f(x)=2 x+5$

x	$2(x)+5$	$f(x)$
2		
3		
-1		

13. Use $g(x)=4 x-1$ to find $g(-2)$ and $g(0)$.
14. For the function $g(x)=\frac{1}{3} x-2$, find the value of x so that $g(x)=4$ and $g(x)=-4$.

- Even, Odd, or Neither?

- Test for EVEN and ODD Functions:

A function value f is EVEN if, for each x in the domain of $f, f(-x)=f(x)$.
A function value f is $O D D$ if, for each x in the domain of $f, f(-x)=-f(x)$.

